Impact of Rejuvenation of Lakes and Water Conservation Structures – A Study Report

> Submitted to: MANUVIKASA KARJAGI

Dr. R. Vasudeva College of Forestry, Sirsi, University of Agricultural Sciences, Dharwad

Contents

EXECUTIVE SUMMARY	3
Data Summary	6
Introduction	7
About Manuvikasa	9
Purpose of the Survey1	L O
Methodology1	L O
Results and Discussion	۲7
Common Profile of the Sample Villages1	۲7
Selection criteria and protocol for tank for rejuvenation1	٤9
Protocol for Selection of Lakes for Rejuvenation adopted by Manuvikasa	٤9
Percolation Tanks	20
Farm Ponds2	21
Rejuvenation of Lakes2	23
Historicity of the tanks and their rejuvenation2	28
Increased water storage and associated benefits to the farming communities and nature	28
Biological Impact in Uttara Kannada District3	33
Potential long term ecological benefits from tank rejuvenation are:	34
Lake ecosystem services	35
Employment Generation through lake rejuvenation activities	36
Change in ground water and irrigation3	38
Improved cropping pattern and area3	38
Potential long term economic benefits from tank rejuvenation are:	39
Participatory approach of the lake rejuvenation4	10
People perception and sustainability aspects4	11
Case Studies4	12
Farmers' opinion4	12
Village: Kallagadda kere, Taluk: Haveri, District: Haveri4	12
Village: Bummighatti, Mundgod Taluk District: Uttara Kannada4	13
Village: Kopparasi Koppa Mundgod Taluk District: Uttara Kannada	13

Village: Dasti Koppa Mundgod Taluk District: Uttara Kannada	43
Village: Malagunda, Hangal Taluk, Haveri District	44
Village: Thotadamane, Sirsi Taluk Uttara Kannda District	44
Village: Shanuvalli, Sirsi Taluk Uttara Kannda District	44
Opinion of elected members and officers	45
Application of this study	46
Conclusions	46
Recommendations	47

EXECUTIVE SUMMARY

In South India, lakes / tanks are inextricably linked to the socio-cultural aspects of rural communities and have historically been an indispensable part of the village ecosystem. In southern Indian drier areas, it is estimated that rain-fed tanks receive full storage only in two years in a decade; they get half filled in three years and less than one third filled in three years. They go dry in the remaining two years. With this precarious condition, the marginal farmers have to work in other fields to earn their livelihood during years of less rainfall and deficit inflow to the tanks. Over several years, the existing lakes in this region are subjected to several adversaries such as siltation, non-maintenance, encroachment, broken embankments, infested by weeds and shrubs etc. Net result is that the most of the lakes are in degraded conditions. There was an urgent need to rejuvenate these lakes in this region.

Manuvikasa, a non-governmental organization, is actively undertaking a yeoman service of tank rejuvenation apart from working towards alleviation of poverty, awareness activities on different social problems; and various other issues for rural development. This study has been conducted to evaluate the impact of lake rejuvenation / different water harvesting systems undertaken by Manuvikasa in Uttara Kannada, Shimoga, Haveri, and Dharwad districts.

A total of 40 lakes have been rejuvenated under the Ajim Premji Philanthropic Initiative (APPI) programme. These are spread in four taluks of four districts of Northern Karnataka. Further, a total of 100 farm ponds / water harvesting structures have also been constructed under the same programme. These are spread in two taluks of Uttara Kannada district in Northern Karnataka. Economic impact is measured in terms of changes in area under irrigation, productivity (yield) of land, livestock holding, income and consumptions. Ecological impact is measured in terms of changes in perceived groundwater, fodder and fuel wood.

The tanks that were rejuvenated were spread in four districts, of them 26 tanks of Dharwad and Haveri districts were in eastern plains and bio-climatically were drier than other sites; while those from the Shivamogga district were situated in the transition zone with an annual rain fall around 1500 mm. The four tanks in Uttara Kannada were in hilly zone with over 1700 mm annual rain fall. All the study sites for the farm ponds and other structures studied were situated in Uttara Kannada district. All the lakes have been rejuvenated keeping engineering and geological aspects in mind.

Tank rejuvenation is highly relevant for improving livelihoods and alleviating poverty in drought-prone regions. Tanks restore the ecological balance between surface and groundwater resources. Collective action is possible in resource management, provided there are incentives for cooperation. The lake rejuvenation has brought in socio economic changes among the villagers. A detailed study is required to completely map the beneficiary landscape.

A total of 1345 families were directly benefitted from these interventions, of which rejuvenation tanks contributed more benefits to the communities of 1199 families in all the four districts. The recharge pits and farm ponds were implemented in Uttara Kannada district, of which 46 families were benefitted by Percolation pits and about 100 families were directly benefitted due to the farm ponds. However the positive influence of tank rejuvenation can reach over an agricultural area spread up to few kilometers. This aspect needs deeper understanding.

It was estimated that about 330 million litres of additional storage was achieved (water storing capacity of the lake has increased by estimated 60% after This has a cascading rejuvenation). positive influence on all agricultural activity. It was also observed that least in four lakes, water was overflowing. It was evident by functioning of defunct bore wells that ground water was recharge in six lakes. Nevertheless lakes are going to increase the ground water and ensure supply of water availability for the lakes. It is noticed that at least 25% of the change in the cropping pattern towards growing cash crops such as Maize and Arecanut. Such effects would go a long way in alleviating poverty.

Application of tank silt to the dry land farms is an effective way to boost the water holding capacity of the soil thereby contributing to the agriculture productivity. Through the rejuvenation of 40 lakes a massive amount of silt (over 10,000 tractor loads) has been added to the nearby lands, which itself is massive ecological benefit. The whole operation of lifting of the tank silt has generated about 20,000 man hours of labor and an estimated transaction of over 498 lakh INR. This was crucial for the livelihood of the people during the period of COVID. However the positive influence of tank rejuvenation can reach over an agricultural area spread up to few kilometers in the '*achcut* area'. This aspect needs deeper understanding.

Due to participatory approach, a community mobilization for lake rejuvenation was achieved. Common understanding was arrived among the community members thereby smoothened the efforts of Manuvikasa and ensured in effective implementation of lake rejuvenation initiatives. Every individual farmer interviewed, has expressed great satisfaction about the initiative and the work of Manuvikasa in tank rejuvenation.

Due to rejuvenation, the tanks are re-gaining their old glory of hosting huge bio-diversity. Over a period with a protection from community, these lakes would be home to several life forms such as birds, insects, reptiles. The lake would also help in absorption of heat generated in the region. The roosting of birds in the lake do help in the pest control of the agriculture crops in the surrounding region on a long run. There is an indication that at least one are two lakes would turn into congregation of water birds such as egrets, cormorants.

Market strategies such as beneficiary contribution are necessary for strengthening and sustaining the collective strategies. Considering the increased benefits and from point of equity, it is also important to improve the livelihood of the rural community through increasing the gross tank product in future tank rehabilitation and rejuvenation projects. Tank rejuvenation which has been started purely as a physical rehabilitation to increase agricultural productivity should in future focus on institutional strengthening and poverty alleviation.

Data Summary

Districts Covered	= Four
Taluks Covered.Uttara Kannada=SirsiShivamogga=SorabaHaveri=HanagalDharwad=Kalaghatagi	= Four
Number of Tanks rejuvenated	= 40
Number of Water Harvest Structures constructed	= 100
Total Expanse (acres) of tanks de-silted	= 318.84 acres
Total additional water storage achieved: Through Lakes liters Through ponds Through water harvesting structure in Betta Land every year	= 80 million liters
Estimated Per cent increase in water storage increased due to rejuvenation=	= 60
Number of bore well / open wells rejuvenated due to rejuvenation=	4,000
Per cent cropping intensity increased	= 25 per cent
Major crops that are leveraging an additional water harvested: Conventional crops: Paddy, Areca nut, Maize, Groundnut, Newly adapted crops: Areca nut, Banana, Ginger, Mango, sugarcane, maize etc.	
Number of villages with cascading positive by tank rejuvenation. = Lake rejuvenation	= 36 = 59 = 11 = 1345 = 1199 = 100
Estimated number of families indirectly benefitted by tank rejuvenation=	16,000
Number of acres benefited	=4705 acres
Number of tractor loads of silt lifted from tank bed	= 99,783
Number of Man-Days of work for lifting silt from tank bed	= 19,956
Estimated cash transaction among villagers for lifting silt	= 498 Lakh INR

Introduction

In South India, lakes / tanks are inextricably linked to the socio-cultural aspects of rural communities and have historically been an indispensable part of the village habitat. Lakes in rural areas play an important role in providing various ecosystem services to human kind. They are the lifeline to our agriculture, livestock, and other domestic needs. It is commonly stated that "there is no place left in India, where lakes can be constructed as the lakes have been constructed at all the places in the country where it should be constructed". Hence India is known as land of lakes. As small-scale irrigation systems, these tanks are easily adaptable to the system of decentralized village administration they have.

However, over hundred years of existence of these lakes, they are under estimated as key resource that needs to be maintained and protected. There may be several reasons attributed to it such as ignorance, centralized regulations, change in the ownership, urbanization *etc.* In a current scenario of water scarcity, frequent drought like situations, flash flood, depleting ground water table, a need is being felt by a people to relook at these water resources. This scenario of lakes is evident in most part of the country. In this part of the country, lakes are also called tanks. In this report the phrases 'lake' and 'tank' are inter changeably used. The number of tanks rehabilitated effectively is negligible compared to the total number of tanks. With limited water resources, vagaries of the monsoon, and looming water scarcity in many parts of India, the need for rehabilitating and restoring the tanks assumes significance.

Statistically, the rain-fed tanks receive full storage only in 2 years out of 10. They get half filled in 3 years and less than one third filled in 3 years. They go dry in the remaining 2 years. With this precarious condition, the marginal farmers have to work in other fields to earn their livelihood during years of less rainfall and deficit inflow to the tanks. More over in the years of poor storage, farmers have to switch over to rain-fed dry crops. If the tanks do not get filled regularly, maintenance works of the tank systems is poor, thus reducing tank flow. The wells in the command area are also not getting sufficient recharge and poor distribution network adds to reduced irrigated area. As a result, agricultural labor availability and income from tank-irrigated systems are reduced. India has thousands of tanks and ponds that, if rejuvenated, will contribute significantly to not only increasing food production but also provide a variety of livelihood options to the rural poor and women.

Karnataka has 36,672 tanks with a command area of around 690,000 ha distributed in 27 districts. About 90% of these tanks have a command of less than 40 ha. The administrative perception

of a tank seems to be purely in engineering and technical terms while expertise from other fields (e.g., agronomy, hydrology, watershed and social sciences) for a holistic management of tanks is woefully missing.

The government of Karnataka has recognized the importance of tank rehabilitation. However, holistic planning or management has not been contemplated for the sustainability of the benefits. Detailed water accounting/auditing of each watershed has to be carried out. Issues such as improving the groundwater regime to enable conjunctive use, catchment area treatment to reduce further silting, integrating programs like fisheries, strong irrigation-agriculture extension, etc., have not been considered in the planning process.

Though Karnataka is known for tank management by the local communities, maintenance and management practices introduced by the State in recent years have undermined the importance of community participation. The consequence is that a large number of tanks in Karnataka today become ineffective or in some cases defunct, the area irrigated by tanks has declined, and the local ecosystem deteriorated. The tank was meant not only for agriculture but also served as a resource base for many other activities like collection of fodder and fuel, making of bricks, pots, and baskets, etc., with women always offering their assistance in these processes. Hence, the tank and its surroundings used to be the common property of the village and its people. In Karnataka, districts like Uttar Kannada, Shivamogga, Dharwad and Haveri generally receive good rains annually compared to other part of the state. The undulating and plain topography in these districts enable to have good number of lakes. Over several years, the existing lakes in this region are subjected to several adversaries such as siltation, non-maintenance, encroachment, broken embankments, infested by weeds and shrubs etc. Net result is that the most of the lakes are in degraded conditions. There was an urgent need to rejuvenate these lakes in this region.

About Manuvikasa

Manuvikasa is a non-governmental, non-political, voluntary organization committed for the advancement of education, environment and rural folk. It was registered in the year 2003 and working in Uttara Kannada, Dakshina Kannada, Shimoga, Haveri, Dharwad and Davanageri districts of Karnataka, India. The organization is addressing the issues such as alleviation of poverty, awareness activities on different social problems; water conservation, publicize human rights and child rights, employment creation, proper management of natural resource and various other issues for rural development. An assessment study has been conducted to evaluate the different water harvesting systems adopted for improving groundwater recharge and associated benefits for the farming community in Uttara Kannada, Shimoga, Haveri, and Dharwad where Manuvikasa has created rain water harvesting structures in different eco-regions.

Purpose of the Survey

The key objective of the survey was to assess the efficacy of the lake restoration endeavor taken up by the MANUVIKASA in the taluks of Sirsi, Sorab, Hangal, Mundgod and Kalghatagi spread across Uttar Kannada, Dharwad, Haveri and Shivamogga district. The key aspects that were taken up into account in this assessment was to know the:

- Historical relevance of the lakes
- Technicalities of the lake
- Role of participatory approach and engagement of various stakeholders
- Ecology and environmental aspects
- Change in the ground water and irrigation
- Improved cropping pattern and yield enhancement
- Socio economic aspects
- People's perception and Sustainability aspects
- Lake ecosystem services

Methodology

A total of 40 lakes have been rejuvenated under the APPI programme during the year 2020-2021. These are spread in four taluks of four districts of Northern Karnataka. The geospatial details of these lakes are provided in the Table 1. Out of these, thirteen lakes were small with less than 5 acres are water spread, thirteen lakes were of medium size that had an expanse of 5 to 10 acres and ten lakes were large with 10 acres of extent.

SI. No.	Lake Name	Village	Taluk	District	Latitude (N)	Longitude (E)
1	Mugalikattekere	Agasanahalli	Soraba	Shivamogga	14.60373463	75.15466023
2	HittalaKere	Kalakoppa	Sirsi	Uttara-Kannada	14.50629698	75.01316421
3	Koraganakattekere	Neralagi	Soraba	Shivamogga	14.58390303	75.14357176
4	GodaumballikatteKere	Gangavalli	Soraba	Shivamogga	14.48613347	75.23751342
5	DoddaAladakere	Arishinaguppi	Hangal	Haveri	14.66612823	75.19683371
6	HunasikatteKere	Guduginkoppa	Soraba	Shivamogga	14.34482688	74.89354699
7	JanattikattiKere	Honkana	Hangal	Haveri	14.64405182	75.19926739
8	SankappanaKere	Dyavasa	Soraba	Shivamogga	14.49504322	74.95216421
9	BolagattiKere	Lakkolli	Soraba	Shivamogga	14.58844404	75.10155241
10	KesinkatteKere	Hirekumsi	Hangal	Haveri	14.65249762	75.12745031
11	HolagattiKere	Arishinaguppi	Hangal	Haveri	14.66858268	75.19921867
12	GorakattiKere	Gadiyankanalli	Hangal	Haveri	14.71354583	75.1147452
13	TeppadaKere	Kantraji	Sirsi	Uttara-Kannada	14.544624	74.99139473
14	MalammanaktteKere	Hiruru	Hangal	Haveri	14.71091337	75.11124074
15	Hunasikattikere	Shadaguppi	Hangal	Haveri	14.68078926	75.18930506
16	MudlerkattiKere	Hanumanakoppa	Hangal	Haveri	14.70359918	75.10286179
17	KalkatteKere	Balambeed	Hangal	Haveri	14.74958202	75.2064695
18	LokavvanakattiKere	Hirekumsi	Hangal	Haveri	14.6440228	75.12461264
19	Government GergattiKere	Kalveyallapura	Hanagal	Haveri	14.7802216	75.19870242
20	Konanakere	Nittakki	Sorab	Shivamogga	14.49987833	75.08291000
21	KontageriKere	Shadaguppi	Hanagal	Haveri	14.67766271	75.19051017
22	Kadankattekere	Yattinalli	Hanagal	Haveri	14.70349965	75.20280881
23	HonnallevarakattiKere	Tavarageri	Kalaghatagi	Dharwad	15.10261235	74.99251839
24	Badagikatte	Kuppagadde	Sorab	Shivamogga	14.66003178	75.00140942
25	DesayiKere	Dastikoppa	Kalaghatagi	Dharwad	15.19349739	74.99253689
26	JoulakatteKere	Tattur	Sorab	Shivamogga	14.492445	75.22736333
27	Oddinakere	Aralihonda	Kalaghatagi	Dharwad	15.09744685	75.00905924
28	Hirekere	Aladakatti	Kalaghatagi	Dharwad	15.10917	74.96655333
29	DoddaKere	Kopparsikoppa	Hanagal	Haveri	14.80528333	75.06802333
30	Hosakoppa	Hoskoppa	Sirsi	Uttara Kannada	14.655497	75.00893

Table 1 Details of the Lakes that have been rejuvenated under APPI fund by Manuvikasa

31	KadlekattiKere	Kalgudde	Hanagal	Haveri	14.58853162	7522404645
32	Tarekattikere	Sirinayakanakoppa	Sorab	Shivamogga	14.4910239	75.18055828
33	Jondikere	Tumarikoppa	Kalaghatagi	Dharwad	15.20360114	74.9370773
34	BidaramuliyavaraKere	Bommigatti	Kalaghatagi	Dharwad	15.07432833	74.96891833
35	BalageriKere	Malagunda	Hanagal	Haveri	14.70613566	75.2131718
36	BalagattiKere	Kirawada	Hanagal	Haveri	14.60688315	75.21061448
37	Bennikeri	Hullambi	Kalaghatagi	Dharwad	15.24448068	74.96319048
38	Hire kere	Badangod	Sirsi	Uttara Kannada	14.700225	75.012722
39	Basappanakere	Tavarageri	Kalaghatagi	Dharwad	15.09615333	74.97225500
40	HelagattiKere	Yalavatti	Hanagal	Haveri	14.860185	75.14404946

Further, a total of 100 farm ponds / water harvesting structures have also been constructed under the APPI programme during the year 2020-2021. These are spread in two taluks of Uttara Kannada district in Northern Karnataka. The geospatial details of these structures are provided in the Table 2. Out of these, 13 lakes were small with less than 5 acres are water spread, fifteen lakes were of medium size that had an expanse of 5 to 10 acres and about ten lakes were large with 10 acres of extent.

Table 2: Details	of the	farm	ponds	and	water	harvesting	structures	that	have	been	constructed
underA	PPI fund	d by th	le Manı	ıvika	Isa						

	underAPPT fund	by the Manuvika	asa				
SI. No.	Name of tank owner	Village	Panchayat	Taluk	Holding size (acres)	Latitude (N)	Longitude (E)
1	Vasanth Ganapati Bhat	Hasanagi	Hasanagi	Yellapur	1	14.85247276	74.83074269
2	Ratnakar Timmayya Hegde	Heepanalli	Yadalli	Sirsi	3	14.61339	74.80567167
3	Rajeev Krishna Hegde	Heepanalli	Yadalli	Sirsi	3	14.6088333	74.80605833
4	Subray Ganapati Hegde	Hittalsara	Hasanagi	Yellapur	3.2	14.85765134	74.8660399
5	Madhukar Seetaram Hegde	Hare Hulekal	Hulekal	Sirsi	5	14.68128711	74.76992239
6	Gopal Ramakrishna Bhat	Nirnalli	Itaguli	Sirsi	1	14.6466944	74.79318357
7	Ganapati Ramachandra Hegde	Kottigemane	Hulekal	Sirsi	2	14.68021312	74.76621309
8	Satish Ramachandra Hegde	Kottigemane	Hulekal	Sirsi	2	14.68202414	74.76728069
9	Ganapati Krishna Hegde	Hiresara	Hitlalli	Yellapur	9	14.81523987	74.82481141
10	Vinayak Vighneshawar Bhat	Motinsara	Yadalli	Sirsi	3	14.59954564	74.83415728
11	MablaBeera Gouda	Karaguli	Analebail	Siddapur	2	14.4522384	74.78672078
12	Yadav Vaman Bhandari	Hulibarakanjaddi	Hitlalli	Yellapur	2.05	14.81350824	74.7638081
13	Ganesh Shantaram Bhat	Kargadde	Targod	Sirsi	2.05	14.66190125	74.82208074
14	ShanmukhHuliya Gouda	Mundgehalli	Gudnapura	Sirsi	6.1	14.54599552	74.94336729
15	ShivuMastiKanade	Morigadde	Unchalli	Sirsi	1.2	14.56315089	74.93021825
16	Venkatramana Manjunath Hegde	Varlegadde	Mundgehalli	Sirsi	4	14.54212676	74.95074391
17	Omkar Suresh Gouda	Hallikoppa	Korlakatta	Sirsi	3.23	14.62901839	74.98118195
18	Nagaraj Annappa Gouda	Hallikoppa	Korlakatta	Sirsi	2.2	14.62901238	74.98120126
19	Krishna Madev Naik	Hondagadde	Upleshwara	Yellapur	1.2	14.89391053	74.77383284
20	Subray Narayan Kalmane	Kalmane	Dehalli	Yellapur	3	14.94143278	74.61006604
21	Shankar Krishna Siddi	Balagar	Dehalli	Yellapur	1	14.95100818	74.60483188
22	Babu Krishna Siddi	Balagar	Dehalli	Yellapur	2	14.9555208	74.60690271
23	Shantaram Ramakrishna Hegde	Narsgal	Nilkund	Siddapur	2	14.48532807	74.7277032
24	Shambhuling Chandrashekar Hegde	Dodnalli	Dehalli	Sirsi	1	14.64976568	74.9015834
25	Ramachandra Jattappa Naik	Belladda	Bisalakoppa	Sirsi	1.4	14.74691558	74.89658685
26	Malini Suresh Hegde	Hiriyal	Dehalli	Yellapur	3	14.96641693	74.60587492
27	Shripad Babu Marathi	Lingadabail	Idagundi	Yellapur	1	14.94817824	74.62870102
28	Chandrakant Rama Siddi	Hiriyal	Dehalli	Yellapur	2	14.96390634	74.60450356
29	Kamala Suresh Siddi	Lingadabail	Idagundi	Yellapur	1.2	14.95341651	74.63350293

30	Suresh Manjunath Hegde	Hiriyal	Dehalli	Yellapur	3	14.96597704	74.60884832
31	Gopalakrishna G Hebbar	Hamsanagadde	Idagundi	Yellapur	3	14.93497871	74.64677048
32	Vijayananda B Chappalagavi	Hiriyal	Dehalli	Yellapur	3	14.96581305	74.60504025
33	Anjana Raghavendra Ganvkar	Hiriyal	Dehalli	Yellapur	5	14.96824502	74.60925484
34	Narayana Nagappa Naik	Achanalli	Dodnalli	Sirsi	2	14.65940788	74.91233117
35	Pandu Putta Naik	Byagadde	Dodnalli	Sirsi	6	14.64074524	74.90515014
36	Nagaraj Parameshwar Bhat	Dodnalli	Dodnalli	Sirsi	5	14.48532807	74.7277032
37	Ramachandra Ganapati Hegde	Bannimane	Nilkund	Siddapur	2	14.49690604	74.71329266
38	Prabhu Kyatannavar	Rangapura	Badanagod	Sirsi	2.08	14.70448863	75.02627366
39	Venkatraman Ganapati Hebbar	Hamsanagadde	Idagundi	Yellapur	3	14.93726743	74.64636404
40	Vivek G Hebbar	Hamsanagadde	Idagundi	Yellapur	3	14.95735854	74.75746706
41	Ramakrishna TayiParameshwari	Kumbrigadde	Nilkund	Siddapur	2.05	14.48209713	74.71929235
42	Mahalaxmi V Hebbar	Hamsanagadde	Idagundi	Yellapur	3	14.93848591	74.64583104
43	Anant Krishna Devali	Tanyanakumbri	Dehalli	Yellapur	2	14.97940372	74.63688922
44	Narayana M Bhat	Kanchanalli	Chandaguli	Yellapur	1	14.91138416	74.76874494
45	Narayana M Bhat	Kanchanalli	Chandaguli	Yellapur	1	14.91168209	74.76904753
46	JockyD'souza	Dehalli	Dehalli	Yellapur	2.2	14.96993825	74.62937074
47	Narayana Subray Bhat	Totadamane	Dehalli	Yellapur	2		
48	Rajaram Krishna Hegde	Baggisara	Dodnalli	Sirsi	4	14.63486483	74.91524683
49	Manjunath V Hegde	Honnekoppa	Nilkund	Siddapur	2.05	14.49206022	74.73197759
50	Rama SadiyaDevadiga	Korse	Bisalakoppa	Sirsi	1	14.73362914	74.90361605
51	KrishnamoortiShripati Hegde	Boppanalli	Isloor	Sirsi	3.2	14.70320738	74.8841396
52	Adarsh M Madival	Boppanalli	Isloor	Sirsi	1	14.70542414	74.88375354
53	Arun HanumantDevadiga	Hemmadi	Kundaragi	Yallapur	1.24	14.74694833	74.87610833
54	VasulingaMarathe	Hemmadi	Kundaragi	Yallapur	1	14.754775	74.883415
55	Jagadeesh M Naik	Kumbrimatti	Kulave	Sirsi	2	14.5811649	74.87058975
56	Vighneshwar M Naik	Kumbrimatti	Kulave	Sirsi	2	14.581493	74.87304255
57	Rama SukraPoojari	Hemmadi	Kundaragi	Yallapur	2	14.75018833	74.881015
58	Basavaraj G Mattigatti	Hemmadi	Kundaragi	Yallapur	1	14.751705	74.87069667
59	Ramachandra Durga Naik	Shivalli	Bisalkoppa	Sirsi	1.2	14.74361	74.89294833
60	Ganapati M Naik	Oudala	Sonda	Sirsi	1.07	14.72745365	74.73341579
61	Umesh Hegde	Hemmadi	Kundaragi	Yallapur	1.2	14.75768	74.868255
62	Rama Madev Marathi	Kabbingadde	Chandguli	Yallapur	3.2	14.94180355	74.77659015
63	Nagesh Yalla Marathi	Kabbingadde	Chandguli	Yallapur	2.2	14.93926036	74.77536396
64	Ishwar Govind Hegde	Корра	Unchalli	Sirsi	5.2	14.54043154	74.89377892
65	AnanduMadurDevadiga	Hitlasara	Hasanagi	Yallapur	3.25	14.84548463	74.86463623

66	Darshan Bhat	Bisalkoppa	Bisalkoppa	Sirsi	2.2	14.70752333	74.93212667
67	Parameshwar Ganapati Hegde	Gangeri	Isloor	Sirsi	3	14.66104	74.90623333
68	Keshav Nagesh Arer	Landakanahalli	Dodnalli	Sirsi	1.32	14.6278506	74.86909635
69	Manjunath Subray Naik	Yankanajaddi	Hulekal	Sirsi	2	14.7237825	74.72969144
70	R M Hegde	Gangeri	Isloor	Sirsi	3	14.66308333	74.90919333
71	Kumar Gopalkrishna Bhat	Malalgav	Chandguli	Yallapur	3	14.89885674	74.73168239
72	Mahesh Hegde	Hemmadi	Kundaragi	Yallapur	12	14.74804167	74.87503833
73	Madhura Naik	Hemmadi	Kundaragi	Yallapur	4	14.75181667	74.85101667
74	Gopalkrishna Bhat	Malalgav	Chandguli	Yallapur	3.2	14.90169145	74.75174091
75	Vittal M Shet	Bugadipal	Chandguli	Yallapur	4	14.89773762	74.74879484
76	V S Naik	Bilaki	Hasanagi	Yallapur	4	14.90278848	74.85554139
77	Mahesh Naik	Bilaki	Hasanagi	Yallapur	2.2	14.90272276	74.85562555
78	Krishna Subray Hegde	Hutakamane	Angod	Yallapur	1.22	14.9586442	74.65871091
79	Mahadev Ganesh Marathi	Hutakamane	Angod	Yallapur	3.2	14.95973216	74.64958781
80	Narasimha Hangari	Hutakamane	Angod	Yallapur	1	14.96028977	74.65601736
81	MahabaleshwaraSubray Hegde	Hutakamane	Angod	Yallapur	1.22	14.96059755	74.65615974
82	Tammanna Ganesh Marathi	Hutakamane	Angod	Yallapur	4	14.9653389	74.64455609
83	Nikhil Ishwar Hegde	Корра	Unchalli	Sirsi	5.2	14.54132961	74.89293401
84	Gopalakrishna Ganapati Sabhahita	Hutakamane	Angod	Yallapur	1.29	14.96596458	74.65348865
85	Ramachandra Gopal Ganvkar	Hutakamane	Angod	Yallapur	2.3	14.96787845	74.65089162
86	Narayana Ganapati Bhat	Hiriyala	Dehalli	Yallapur	8	14.96601569	74.63918515
87	Manjunath Marathe	Kabbingadde	Chandguli	Yallapur	3	14.93881647	74.76626987
88	Raghavendra R Bhat	Kabbingadde	Chandguli	Yallapur	5	14.938739	74.7685188
89	Vinayak R Pai	Krishnagadde	Kannigeri	Yallapur	3	15.00543816	74.71952506
90	Ganesh HanumantappaBovivadder	Bendigeri	Hasanagi	Yallapur	3	14.93095301	74.86123731
91	Sumant Naik	Bharani	Kundaragi	Yallapur	1.2	14.78569073	74.86065335
92	Girish Poojari	Bislkoppa	Bislkoppa	Sirsi	1	14.75354167	74.86654833
93	Markos Siidi	Kalanjikoppa	Hasanagi	Yallapur	2.2	14.70752333	74.93212667
94	Subrahmanya Bhat	Hulimane	Chandguli	Yallapur	4	14.91298016	74.75207951
95	Shivaram G Bhat	Hulimane	Chandguli	Yallapur	4	14.91376445	74.75148878
				Yallapur	1	14.90382938	74.85264586
96	Mahabaleshwar Naik	Kalanjikoppa	Hasanagi	ranapur	-	14.30302330	74.03204300
96 97	Mahabaleshwar Naik Ganesh Poojari	Kalanjikoppa Hemmadi	Hasanagi Kundaragi	Yallapur	2	14.75354167	
				•			74.86654833
97	Ganesh Poojari BangarappaSiddana	Hemmadi	Kundaragi	Yallapur	2	14.75354167	74.89204380 74.86654833 74.99785821 74.69430618

Of the 40 lakes constructed, 10 lakes were randomly selected in 5 taluks spread across 4 district for the survey assessment. Further among 100 farm ponds / water harvesting structures constructed by Manuvikasa a sample of 25 sites were visited. Both qualitative and quantitative information was elicited. Group discussions, transect walks and discussions with local were conducted to obtain an overview of the situation. Following methodology to collect the information from the visit was adopted:

- A questionnaire was prepared to collect the information
- Field observations on the rejuvenation of lakes
- Interaction with local *panchayath* representatives and its members
- Informal discussion with farmer beneficiaries and other community members
- Mapping of the lakes was done
- Farmland visits
- Photo documentation of lakes

Impact was measured in terms of changes in various indicators because of the tank restoration program. It is measured across different size classes of holding in order to examine the distributional aspects of the impact. Impact indicators were grouped under economic and ecological categories. Economic impact is measured in terms of changes in area under irrigation, productivity (yield) of land, livestock holding, income and consumptions. Ecological impact is measured in terms of changes in perceived groundwater, fodder and fuel wood.

Results and Discussion

This study presents the results of the impact analysis of adopting different rain harvesting structures implemented in the study area by Manuvikasa. For a rain harvesting project to be sustainable, multidimensional impacts should be considered, mainly social, economic, ecological and environmental well being. Both qualitative and quantitative approaches have been used for the evaluation. Data were collected through group discussion with different categories of farmers. However, the study mainly relies on the data collected by using an interview schedule. Key informant interviews and focus group discussions with multiple stake holders to find out strength and constraints of the rain harvesting systems adopted in different eco-regions of the study area. Analysis involved assessment of quantity of water recharged into the ground, crop pattern change, change in agricultural income and also expected improvement in biodiversity of surrounding area before and after implementation of the rain water harvesting systems.

Common Profile of the Sample Villages

All the study sites for the farm ponds and other water harvesting structures studied were situated in Uttara Kannda district. This is the district with highest forest cover in the state and only 11% of the area is under cultivation. About 70 percent of the population (14.37 Lakhs) reside in rural areas. Communities belonging to SC / ST category work as agricultural laborers. Two major soil types the coastal alluvial soil and the lateritic soil in the Upper Ghats predominantly occur. A patch of black soil in Yellapur taluk is also found.

Fig. 1. Water bodies of Uttara Kannada

⁽Source: Ramachandra, T.V., Subash Chandran, M.D., Joshi, N.V., Vinay, S., Bharath, H.A., Ganesh Hegde and Gouri Kulkarni, 2014. Water Bodies of Uttara Kannada, Sahyadri Conservation Series 44, ENVIS Technical Report: 81, November, 2014, CES, Indian Institute of Science, Bangalore-560012, India.)

Another unique tenure system exists in the Uttara Kannada district called Betta land. More than 23,000 ha of geographic area are under this system. It is a unique privilege granted by the Govt. for the purpose of collecting leafy biomass for to be used in Arecanut cultivation. Water harvesting structures and ponds were constructed in these betta lands for in the farm lands. There is no other means of irrigation is available to these villages and they need to use surface water for irrigation. The four tanks in Uttara Kannada were in hilly zone with over 1700 mm annual rain fall.

The tanks that were rejuvenated were spread in four districts, of them 26 tanks of Dharwad and Haveri districts were in eastern plains and bioclimatically were drier than other sites; while those from the Shivamogga district were situated in the transition zone with an annual rain fall around 1500 mm. Haveri is relatively smaller district of the state with 770 per square kilometer of geographic area. A Total 15 per cent of the population in the Hanagal Taluk belongs to SC and ST community. The annual average rainfall is 1063mm and 03 times this Taluq has received less than 800 mm rainfall in a year and affected by draught in last ten years. About 9698 ha is irrigated through lake water and around 10530 ha are irrigated through bore wells.

Shivamogga district covers an area of 8477.84 sq. km and lies in the Western part of the Karnataka state between 130 27' to 140 14'39" north latitude and 740 38' to 750 45' east longitudes with a population of 1,752,753. The Scheduled Caste population contributes 17.6 percent to the total population of the district and the Scheduled Tribe population contributes 3.7 percent. The district has 276855 ha. of forest, which constitutes 32.66 per cent of the total geographical area of the district. The fallow land in the district is around 38831 ha. Net area sown during the year 2006-07 was around 223695 ha, out of which, 36212 ha of land was sown more than once.

There are wide variations between the sample villages regarding their socio-economic features. The average farm size ranges from 1to12 acres; the population ranged from 200 to 2000. The selection of beneficiary villages was based on larger proportion of socially and economically weak sections as well as the need for the rejuvenation. This is in line with the criterion adopted by the government while implementing programmes such as watershed development. In all these villages, there is no institutional mechanism that exists for tank rejuvenation and hence it is currently un organized.

Selection criteria and protocol for tank for rejuvenation

Based on the need and interest expressed by the communities the site selections were done. Villages with small and marginal farmers and with SC/ST population were selected. Water conservation in Betta Land was based on farmers interest and not based on economic conditions of the farmers.

Protocol for Selection of Lakes for Rejuvenation adopted by Manuvikasa

- 1. Group meeting and discussion with the community and ice braking meting as well as expression interest for lake rejuvenation.
- 2. Confirmation by the community to lift the tank silt obtained during rejuvenation and contributing about 50 percent of the excavation cost.
- 3. Getting appropriate permission from the Gram Panchayath and local administration.
- 4. Thrashing of issues pertaining to the lake boundary / encroachment, if any, through dialogues in open community meeting.
- 5. Assessment of impact of the work and potential beneficiaries/ benefits.
- 6. Investigations into the technical part of construction, silt accumulation status, bund status etc.
- Developing ground rules for lifting of silt and proper disposal to the farm lands / common lands / road as desired by the communities.
- 8. Slating the dates for rejuvenation and execution of work

Percolation Tanks

Percolation tanks are in semi-circle shape in the flat valleys of *Bettaland* and open hills where water from hills collect at one place and later it flows as stream. Mud bund built in one side across the valley to store water. The excess water of filled tank is discharged separately by drainage channel which is made above the filled mark on either side of the bund. To fill completely it takes on an average two to three rainy days and percolates completely in 3 to 4 days. This has boosted the moisture availability in the nearby old ponds, old tanks etc.

Table 3. Details of the water harvesting structures and rejuvenation of tanks undertaken by Manuvikasa in different districts

Sl. No.	Туре	Uttara Kannada	Shimoga	Dharwad	Haveri	Total
1	Percolation tank	23	0	0	0	0
2	Farm Ponds	100	0	0	0	100
3	Rejuvenation of	04	10	8	18	40
	Tanks /Lakes					

Farm Ponds

Farm ponds were made on farm lands where enough source of water is available. The average size of each farm pond is 30x30x10 ft. The depth of the ponds varies as required by the farmers. These ponds are rectangular in shape. Total 100 farm ponds were constructed by Manuvikasa in two taluks (Sirsi, and Yellapur) of Uttara Kannda and cover a total cultivated area of 270 acres. The stored water is mainly used for cultivation. In other way it also helps in recharging ground water.

Rejuvenation of Lakes

From pre-historic times, the rain dependent state of Karnataka has been witness to continuous efforts by the rulers and the people to set up efficient systems to harness and collect water. In fact, during the Bronze Age and the Megalithic Age, the people of South India were regarded as leaders in constructing waterharvesting systems, especially at places where rivers were not present. A rock inscription of the 4th century which is in the reign of the Kadamba King Mayura Varma describes a tank built by the king in the village of Chandravalli in Chitradurga District. Another inscription of the same dynasty record details of a tank built near the Pranaveswara Temple of Talagunda in Shimoga District. There are ten historic tanks ('Kere' as they are called) reported in Banavasi region of Sirsi taluk. Most of these are located in the eastern part of the taluk where the rainfall is scanty. These tanks were built during Kadamba period (1654 AD). Unfortunately over the days, most of the historical tanks are dying and on the verge of drying up due to silt deposition. In view of giving rebirth to the historic tanks, Manuvikasa have come forward with the contribution of local people and other funding agencies for de-silting historic tanks. People who contributed for de-silting of tanks have got tank silt for their agricultural fields, farm lands etc. Recycling of tank silt provides a win-win situation to both, improvement in soil health and renovation of the tank. However, the clay content of the tank silt ranged from 60% to 80% while their applications to the field reduce the bulk density of the soil. 1.5 to 1.25 g cc-1. Addition of tank silt at 50 and 100, tractor loads per hectare improves the water content by 0.002 and 0.007 g g-1 soil, respectively.

Fig. 2 Expanse (in acres) of the tanks /lakes rejuvinated

Bars 1-8 from Dharwad district; bars 9 – 26 from Haveri district; bars 27-36 are from Shivamogga district; bars 37 to 40 from Uttara Kannada district

Table 4.	Details of the number of families benefitted by different water harvesting
	structures and rejuvenation of tanks undertaken by Manuvikasa

Sl. No.	Туре	Uttar a Kann ada	Shimoga	Dharwad	Haveri	Total
1	Percolation tank	23	0	0	0	23
2	Farm Ponds	100	0	0	0	100
3	Rejuvenation of Tanks	129	264	297	509	1199

Map 1: Location map of 40 tanks (lakes) rejuvenated by Manuvikas in Dharwad, Haveri, Shimoga and Uttara Kannada districts. (source: GoogleMaps)

The ultimate beneficiaries of implementation of rain water harvesting structures are different communities of the villages. It is calculated that a total of 1346 families are benefitted from these interventions. Of which rejuvenation historic tanks contributed more benefits to the communities of 1199 families in all the four districts. The recharge pits and farm ponds were implemented in Uttara Kannada district, of which 46 families were benefitted by Percolation pits and about 100 families were directly benefitted due to the farm ponds.

Fig. 3 Number of families directly benefitted by tank rejuvenation in four districts of Northern Karnataka.

Fig.4 Number of families directly benefitted by percolation tank, farm ponds, and tank rejuvenation in Uttara Kannada district.

Historicity of the tanks and their rejuvenation

During the visits to lakes, an effort was made to know the historical aspects of these lakes so as to know by whom and when the lakes were constructed. Incidentally there no evidence or records that could avail the details in this regard. It appears that most of these lakes were constructed either pre British period or during the British period. This is because the survey and the maps of these lakes referred were that of British era. An effort was made to gather information from the elders of the villages. The eldest person of the nearby villagers who were interacted and asked to tell about the lake and it's usage in the past. None of the villagers had any historical evidence to share when the lakes were constructed. However, they had stories to tell how these lakes were the lifeline for their agriculture practices, domestic usage and for their cultural importance in the past. From the information gathered from the villagers, each lake is no less than 100 years old. The oldest villager whom we interacted with was 80 years old. He expressed that the lake has been in existence since his grandparents. Assuming this, the lakes have been in this region and are no less than 150 years old. This information is of quite significance to know how and why these lakes were constructed. It is evident quite way back, people know

- 1. The significance and the need for lake construction and its usage
- In spite of getting more rain in these areas the lakes were constructed to hold the rain water to be used during off monsoon season
- 3. Financial Investments were made to construct these lakes. Then it would have cost hundreds of rupees to construct, today it would require lakhs of rupees

Impact: Historically the lakes were existent and no comprehensive efforts were made to revive them to bring back alive. It's a great effort by Manuvikas in this endeavor and has set a bench mark for coming years.

Increased water storage and associated benefits to the farming communities and nature

Lakes are rejuvenated taking all engineering aspects into consideration such as proper mapping, ensuring saucer shaped lake structure, optimum desilting by maintaining the required depth of the lakes, creating strong embankment, letting appropriate outlet for excess water to flow. The layout, structure, and construction of these tanks bring out the ingenuity of past generations who constructed the tanks suitably fitting to the gradual fall of the contours. The precise shape and size of each tank

seem to have been determined by the terrain. The overflow of one tank moves into the lower down tank and so on up to the sea or drain. Building this highly interconnected system would have also required civil engineering skills of a high order. Maintaining such an extensive dispersed system and sharing the waters need extraordinary social and managerial skills. The sharing of tank water and other usufructs is perhaps the essence of democratic functioning that prevailed then.

All the lakes that were visited are geographically located at appropriate contours. Each lake has a watershed that feeds to the lake with an outlet at one point. This outlet is connected with the channel that enables the excess water to drain off to the next connecting lake. The water running in the channel is used by the farmers to irrigate their land. Scientific aspects are taken into account while constructing these lakes such as its size, shape and location. The lakes rejuvenated are in a saucer shape with the depth ranging 5 feet to 12 feet. The strong embankment with a masonry work of the lake is a testimony to indicate how good these lakes were planned and constructed. While rejuvenation, the efforts were made to have strengthened embankment and bunds. Today, each lake has a bund with a walking path that facilitating easy maintenance.

Each lake after rejuvenation is inspected by the engineers from the Government and surveyed. This is a testimony that lakes are engineering redrawn on the map and approved by the concerned authority.

Impact: The lakes are rejuvenated keeping engineering and geological aspects in mind. Approval from the concerned authority to this initiative is testimony to the work executed by Manuvikasa.

Ecologically, it is noticed that water storing capacity of the lake has increased by 70%. At least in four lakes, water was overflowing while three lakes due to scanty rainfall, water collected was less. An agricultural activity in the farms around the lake is intensified. It is noticed that at least 25% of the change in the cropping pattern.

Change in area under irrigation is the prime indicator of any impact on rural livelihoods, especially where the major livelihood activity is farming. Major benefits are for the farmers having lands in the command area of the tank. Nevertheless, renovation and rehabilitation of the tank would benefit other sections of the society by way of using excavated silt as organic manure, recharge of groundwater, and increased opportunities for employment. It was observed that the proportion of area under irrigation has increased, though marginally, among all the households in the programme villages after restoration of the tanks.

Apart from the quantitative changes in the area, qualitative changes in the availability of irrigation in terms of throughout-the-season regular and assured supplies are equally, if not more,

important for improving the economic conditions of the farmers. This aspect is reflected in the changes in land productivity.

Fig. 5. Water storage (cubic feet) in tanks before and after rejuvenation (estimated). Bars 1-8 from Dharwad district; bars 9 – 26 from Haveri district; bars 27-36 are from Shivamogga district; bars 37 to 40 from Uttara Kannada district.

Major benefits are for the farmers having lands in the command area of the tank. Nevertheless, renovation and rehabilitation of the tank would benefit other sections of the society by way of using excavated silt as organic manure, recharge of groundwater, and increased opportunities for employment.

Most of the time, silt removed from the tank bed is disposed as manure to the nearby farms. There was no improper disposal of silt which otherwise created environmental problems. Increasing the full tank level of a tank sometimes may cause submergence of foreshore lands, impact on the downstream use of water in a cascading system, and may cause conflicts. However no major conflicts were seen.

Tank rejuvenation has lead to the self eviction of encroachment on feeder channels and foreshore areas in some cases which is positive. Rehabilitation interventions are expected to contribute to reasonable environmental conservation, and improve the productivity of land in the project area.

The beneficiaries benefitted immensely by way of getting nutrient rich silt from the lakes to their farmland. Farmers of the opinion that they need not to apply any inorganic nutrients to their soil for the next 4-5 years

Fig.6_Tractor loads of silts lifted from the tanks during rejuvenation.

Bars 1-8 from Dharwad district; bars 9 – 26 from Haveri district; bars 27-36 are from Shivamogga district; bars 37 to 40 from Uttara Kannada district.

Fig.7 Association between the expanse of the tank and the amount of silt lifted by farmers

At least in two lakes there is considerable change in its ecology and functionality. Water birds have started roosting here. Aquatic plants and insects are profusely seen. It was noticed that in all the lakes visited, due to adoption of scientific means of desiltation, the ecology of the lake has improved. This can attributed to the cleaning of weeds and shrubs that was grown, plugging of lakes leakages if any, strengthening of embankments, desilting to the point without altering lake bed. This is noticed in all the lakes. This intervention has enabled to store optimum quantity of water in the lakes. In two the lakes it was noticed that roosting of birds have started. Aquatic plants and insects are profusely seen. Considering the quality of the water lake, in one lake fish spawns are introduced. None of the lakes had any waste dumps such as domestic and farming except one lake. This is also enabling the ecological health of the lake.

Impact: Ecology of the lake has improved in most of the lake and in few it is changing considerably. Over a period with a protection from community, these lakes would be home to several life forms such as birds, insects, reptiles. The lake would also help in absorption of heat generated in the region. The roosting of birds in the lake do help in the pest control of the agriculture crops in the surrounding region on a long run. There is an indication that at least one are two lakes would turn into congregation of water birds such as egrets, cormorants.

Lifting of Silt from the Lake Rejuvenation Site

Biological Impact in Uttara Kannada District

Being a hilly zone there will be pronounced influence of lae rejuvenation in Uttara Kannada district Wild plants in the forest areas get replenished by improvement in the soil moisture content during summer. The percentage of natural germination status of the wild plants would be improved. In due course of time, moist deciduous forest would slowly convert into to semi-evergreen forest if there would not be any disturbance in the surrounding forests of low rainfall regions. There are several Kaan (community managed forests in the historic time) forests in low and moderate rainfall area. Kaans are semi-evergreen forests and these are abode of several Kaan specialist species like Dysoxylummalabaricum (White cedar), Myristica malabarica (wild nutmeg), Diospyros crumenata (Ebony tree), Artocarpus hirsutus (wild jack) and different varieties of wild pickle mango varieties. Now there is a greater chance to spread these species into other open forests near to these historic tanks because of retaining of soil moisture in the open forests like Kaan forests due to increase in the water storage capacity of the historic tanks. The places where historic tanks are present, the wildlife population would improve to a considerable extent due to storage of large amount of water in the tank. Growth of herb layer in forest area facilitates the herbivores and carnivores in the area. Rejuvenated historic tanks become breeding ground for many water birds in turn bird population will increase drastically. The visit of migratory birds and local birds to the historic ponds increases and thereby it controls the pest and diseases to the surrounding agricultural crops. The productivity of crops also increases by increase in the natural pollinators such as butterflies, honey bees and other insects. Indigenous fish species could also be restored in the rejuvenated tanks owing to the growth of large number of host plants.

The present study documented the biodiversity in around the tanks. About 44 terrestrial and 19 aquatic plants were recorded. Plant species like Terminalia paniculata, T. tomentosa, T. bellarica, T. chebula. Buchnanialanzan. Butea monosperma, Aporosalinledvana, Haldina cordifolia, Holigarnaarnottiana, Strychnosnux-vomica, Lagerstroemia microcarpaetc., are commonly found in most of the studied locations. Aquatic plants like Nymphaea rubra, Nelumbo nucifera, Nymphoides indicum, Rotaladensiflora, Baccopamonneiri, Aponogeton crispus etc., were recorded in few historic tanks. These aquatic plants were in the fear of locally extinction owing to the drying up of most of the tanks in summer and also because of siltation. Now all these aquatic plants could be restored in future days because of tank rejuvenation. Birds such as Moorhen, Little cormorants, Cattle egrets, Water hen, Ibis etc., were documented during the study

Potential long term ecological benefits from tank rejuvenation are:

- increased storage capacity and increased quantities of water available for irrigation
- increased groundwater recharge and groundwater availability;
- improved soil moisture regime and hence, better productivity;
- improvement in quantity and quality of drinking water;
- increased availability of water for livestock;
- increase in the tree cover and clean environment.
- positive impact on bio-diversity and soil biota;
- rehabilitation of degraded lands in the catchments;
- reduction in soil erosion, including loss of nutrients
- clean and better environment.

Lake Ecosystem Services

The lake rejuvenation is enabling several ecosystem services that can be classified into supporting, provisioning, regulating and cultural services.

- Supporting services: Ensuring supply of food in terms of agricultural products, creation of habitat for flora and fauna, supporting local biodiversity etc.,
- Provisioning services: These services include ground water recharging, supply of drinking water, water purification, cooling of temperature and supply of fishes etc.
- Regulating services: Comprises of water purification, carbon sequestration, clean air, nutrient recycling etc.
- Cultural services include aesthetic value, recreation, education, and etc.

Fig.7 Schematic representation of the ecosystem services generated by the tank rejuvenation and their relevance to the Global conservation Goals.

Employment Generation through lake rejuvenation activities

Socially and culturally the lakes were of great importance to the villagers. Apart from irrigation, lakes were used for the purpose such as worshipping the water body, creation of temple or installing the deity near lakes. The decapitated condition of the lake discouraged the community members to visit the lakes. Today, the lake revered with great respect and is being looked as sanctity.

Economically, due to harvesting of water from the lake, yields from cropping have increased by one and half fold. Farmers opinioned that they are able to fetch more money from the excess sales of agriculture produce.

Due to intense farming activities as well as due to lifting of silt, an estimated 19956 man-days employment has been created. Considering all the 40 tanks, the active silt lifting form the tanks alone has generated an estimated transaction of over 498 lakhs. This was critical for the village setting because of the COVID conditions.

Fig. 9 Estimated number of man-days of work generated due to lifting of silt from the tank.
 Bars 1-8 from Dharwad district; bars 9 – 26 from Haveri district; bars 27-36 are from Shivamogga district; bars 37 to 40 from Uttara Kannada district.

Impact : The lake rejuvenation has brought in socio economic changes among the villagers. A detailed study is required in this regard to quantitatively arrive at the actual benefits which could be huge.

Fig.10 Estimated cash flow in the village due to lifting of silt from the tank (in Lakh Rupees).
Bars 1-8 from Dharwad district; bars 9 – 26 from Haveri district; bars 27-36 are from Shivamogga district; bars 37 to 40 from Uttara Kannada district.

The interaction with villagers indicated that the lakes constructed were of great social and economic importance.

Change in ground water and irrigation

Increased groundwater table through recharge is another important impact of tank rejuvenation. Both irrigation and drinking water wells are benefited through rejuvenation. Though it is too early to say the quantum of recharging of ground water due to lake rejuvenation, from the interactions with the farming community it is noticed the ground water recharging has happened from 3 three lakes. Computation from first principle considering the density of bore wells, average distance to which the lake This is evident from the fact that the bore-well near the lakes are not dried up in spite of access extraction ground water. The farmers also opinioned that excess water from the lakes is used for irrigation purpose and due to excess moisture in the atmosphere from lake crops are getting benefitted. An average of 50 hectares of farming land is benefitted due to water availability. Thus, the augmented recharge directly benefits the landholding farmers and indirectly benefits the poor and landless through an increase in employment days. The availability of drinking water was made possible by increased storage. Due to water in the tank, drinking water wells that are constructed both in the tank bed and tank bund are recharged throughout the year. This reduces the drudgery of women who otherwise need to walk a long distance to get a pot of water. Women, who are saved from this drudgery, are able to use the time for personal health care, children's development, and income-generating activities. Moreover, good quality of drinking water available throughout year cuts down waterborne diseases.

Impact: From the lake rejuvenation, the evident of ground water recharge is noticed in 6 lakes. While in other lakes, a study needs to be taken up. Nevertheless lakes are going to increase the ground water and ensure supply of water availability for the lakes.

Improved cropping pattern and area

Profuse farming activities are being taken up in the farms surrounding the lakes. It was noticed that the cropping pattern has changed in these farm lands. Instead of regular crops, commercial crops such as maize, paddy and sugarcane are preferred by the farmers. The farming area was also increased with a hope that water will be available for farming. From four lakes the farmers expressed that they have taken up and or planning to take up three crops in a year. Such a mindset among the farming community is an indication that cropping pattern is changing and willing to extent the farming area.

Impact: Cropping pattern and the cropping area is changing due to lake rejuvenation initiatives. A comprehensive study is required in the endeavor.

Potential long term economic benefits from tank rejuvenation are:

- improved production and higher family income and improved quality of life;
- equitable distribution of water for command farmers;
- increased opportunity for gainful employment;
- reduction in the risk of crop failure;
- improved nourishment (through fisheries development);
- improved interaction among different communities;
- improved livestock and milk production;
- reduction in seasonal migration by landless and poor households;
- increased family income;
- improved quality of life;
- improved interaction among different communities;
- Building sense of ownership of village tanks.

Participatory approach of the lake rejuvenation

Farmers' involvement with their contribution with labor and cash in the rejuvenation processes is important. The approach followed by the Manuvikas team was to visit the concerned panchayats and locate the lakes that need to be rejuvenated. Old maps were tracked to locate the lake and were validated by the concerned officials. Upon narrowing the lake to be rejuvenated, a meeting is organized with all the stakeholders. In a participatory approach, consultations are held with community members. An appeal is made in this deliberation on the process that will be adopted by Manuvikas on how lake will be rejuvenated and how community members needs to extend their support by arranging their vehicles to lift the dredged silt from the lake.

This open deliberation had lot of debates in 70% of the cases. In few there where the issues of lake encroachment, the issue became quite heated up. Due to participatory interaction, a consensus was arrived among the community to resolve such issues. While rejuvenation it was the community members who took care of the labours logistics such as stay and food.

Impact: Due to participatory approach, a community mobilization was able to achieve. Differences were sorted out if any. Common understanding was arrived among the community members thereby not only augment the efforts of MANUVIKASA but also ensured in effective implementation of lake rejuvenation initiatives.

- Engaged participatory approach of involving various stakeholders of the community while planning, executing and post rejuvenation of the lake initiatives
- Once the lakes that were forgotten are brought back onto the maps. Lake boundaries are demarcated. Encroached lakes are evacuated through community consensus and dialogues.
- Engaged participation has resulted in the ownership of the lakes by the community. Due to ownership, the lake sustainability is being assured by the community members
- Interaction with the community members reveals due to use of silt from the lake has increased production of crops thereby enhancement in the economy among the farmers

With the implementation of water harvesting systems, the drinking water and domestic water problems would be solved in future days in the study area particularly in the low rainfall areas. The communities managed not only to secure sustained supplies of water for domestic consumption, but also able to embark upon producing high value crops like ground nuts, arecanut, coconut, pepper etc. They managed to increase their agricultural yield and work availability has also increased for landless labourers. As it has become beneficial, the momentum for rainwater harvesting continue in the village as is evident from community's interest to increase the number of ponds, tanks by constructing new ones. At the same time it enhances the aesthetic value of the tanks among societies. It is proved from the results of other studies showed that, participatory projects combined with sound technical inputs performed better as compared to technocratic, top-down counterpart.

• Socially, the rejuvenation activity has enabled all types of community members to come together to support this rejuvenation initiatives irrespective of caste, creed, gender and economic status

People perception and sustainability aspects

Interaction with various stakeholders was held to give their realistic perception about the lake rejuvenation initiatives. Following are the feedbacks from the people:

- Several initiatives are taken by the Govt and Non-governmental organization to revive the lakes. All their efforts were half-heartedly done and never had logical completion
- The approach adopted by Manuvikas in this initiative was quite genuine. Their team were very supportive and accommodative.
- o Their efforts can never be matched with any other Govt schemes
- We want all our other lakes to be rejuvenated so that our economy is sustained for years together
- A demand is created to locate and rejuvenate the remaining lakes

Setting Ground rules with Farmers about Lake Rejuvenation

Case Studies

Manuvikasa has constructed 123 different rain water harvesting structures and rejuvenation of 40 tanks. Of the different water harvesting structures, farm ponds are mainly used for irrigation where as recharge pits and percolation tanks are meant for rain water harvesting. The water of historic tanks is used for domestic as well as for irrigation purpose. Hence, we have chosen and approached farmers of some of the villages of water harvesting adopted villages to get their opinion and perception on implementation of rain harvesting systems and their impacts as a case study.

Farmers' opinion

Village: Kallagaddakere, Taluk: Haveri, District: Haveri

Over 25 farmers of this small remote village narrated how since 1947 there was no desilting done of their village tank. This village has the largest SC ST population. Following the desilting of the tank the District Collector also visited this village for the first time after independence. The farmers feel that desilting and increasing the capacity of the tank is like some kind of dream coming true. Most of the farmers narrated how there were increases in the yield level because of spreading the silt to the two their forms; they also felt that over a period of time inland fisheries can be taken up.

Village: Bummighatti, Mundgod Taluk District: Uttara Kannada

Mr Manjunath Dholappannavar of Bummigatti village in Mundgod Taluk narrated how desilting of tank has contributed to the improvement of the village and how the farming community has been benefited. Firstly, the increase in water storage has led the people to go for cash crops like Maize and cotton. Secondly, by applying tank silt every farmer has saved a minimum of Rs. 2000 per acre, which otherwise would have been spent on inorganic fertilizers. He added that more than 50 bore wells in and around the village have already been rejuvenated and the water table has been raised because of the increased water storage capacity of the tank. He is of the opinion that farmers from five adjustment villages have also lifted the silt from the tank to apply to their dry lands and have been benefitted.

Village: Kopparasi Koppa Mundgod Taluk District: Uttara Kannada

Sri Ganapati Elivar said that an old "Tank Users' Association" which was existing in the village was defunct and only because of the interventions from Manuvikasa, the tank has been rejuvenated after 60 years. He opined that It has helped in increasing the water availability for their crops and today farmers are able to raise cash crops such as corn with the water available from the tank thereby earning quite a good livelihood. He is of the opinion that because of application of tank silt to their farms the water holding capacity has increased which could be seen in the crop conditions. He stressed that more than hundred tractor owners participated for 15 days of desilting activity which actually coincided with the during the COVID conditions there by generating cash income which was very critical.

Village: Dasti Koppa Mundgod Taluk District: Uttara Kannada

The tank in the village is called "Benne Kere" (Butter Tank) since the silt of this tank is just like butter. Shri Shivappa Guru Sadar narrated how the whole village was united irrespective of political lineance, caste because of the desilting done by the Manuvikasa. He is of the opinion that about 60 to 70 defunct borewells around the village have been rejuvenated because of increased water table after desilting. Application of silt to some of the farms has increased stickiness of the soil, however he said that it now retains a good amount of water in the soil. He immensely thanked Manuvikasa for their help in desilting their tank after 75 years.

Village: Malagunda, Hangal Taluk, Haveri District

In another case study from low rainfall area, Mr. Chidananada expressed happiness over the desilting of tank. According to him now onwards more water will store for longer time and the water table in the surrounding wells and bore wells also going to increase. He also expressed that increase in water availability in downstream of their village will change the cropping pattern with high level of crop productivity in the future days. However, paddy is their main crop in this village but in due course they shifted to sorghum cultivation in 20% of the land due to scarcity of water. Increased crop productivity enhance the household 26 income in the village as well as from diversified vegetables and fruits increase gradually parallel to Maduravalli micro-watershed.

Village: Thotadamane, Sirsi Taluk Uttara Kannda District

The beneficiary farmer was Mr. Veerendra Gowda of Thotadamane village of Hulekal panchayat in Sirsi taluk. He owned 5 acres of arecanut orchards and 3 acres of paddy field with about 15 acres of Bettalnd. Small farm pond was built in his farm long back to feed his arecanut garden. Till recently he used to harvest water for his arecanut garden from his farm pond. He constructed 75 recharging pits and one percolation tank in his Bettalnd and widened and deepened his old farm pond. The dried farm pond in 2015 got recharged by the structures made in Bettalnd and now 10 ft water was stored in the farm pond even in Summar months. By adopting rain water harvesting systems his farm pond became restored and at the same time his arecanut plants all came back to normal. Now he is planning to rear fish in his pond.

Village: Shanuvalli, Sirsi Taluk Uttara Kannda District

Mr. Shekar Marate and Mr. Gopal Marate from Shanuvalli village had constructed farm ponds in the paddy field and recharge pits and percolation tanks in the Bettaland. According to them before 2015 total 30 borewells were drilled and only 5 borewells got enough water and rest of them were failed. After the rain water harvesting structures were made, they again drilled 7 bore wells with 5 inches of water in all the borewells. They expressed that, this is all happened due to the effect of rain water harvesting systems in the surrounding areas by Manuvikasa. They also opined that bigger percolation tanks and recharging pits are more effective than smaller check dams in terms of groundwater recharge based on their observation on open wells around these structures. Farmers in this watershed stated that the water harvesting structures constructed in Shanuvalli village has benefited them in terms of increased groundwater recharging by 25% over earlier years. They also planned to grow sugarcane from the next year.

Opinion of elected members and officers

The sitting member of legislative assembly Mr. Shivaram Hebbar who is also the hon'ble district minister-in-charge has praised the work of Manuvikasa in rejuvenating the historic tanks of this region. In an open meeting with the farming community held at Sirsi recently, he mentioned that the revival of the age old chain link historic tanks in the Banavasi region could impetus to the agricultural growth and enable the recharge of ground water and thereby it solve the domestic water supply to some extent in the region. He also assured that government will take steps to bring Varada river water to fill major tanks of this region in summer is their future agenda of the government. Another opinion from Mr. Ganesh Lambani, Panchayat Development Officer of Gudnapur Panchayat was happy about the determination showed by the Manuvikasa in rejuvenating tanks is all set to deliver longterm dividends. Panchayat encouraged Manuvikasa by putting extra effort in identifying the tanks that were heavily silted and also joins the hand with Manuvikasa in the civic body took up de-silting of inlet and outlet channel reconnecting the water bodies, which receives excess water flowing out of the tanks. The support extended by the Panchayat authorities, engineers, taluk and district administrative indicates the project initiatives as an acceptance for the welfare of the community.

The lake rejuvenation contributes to Lake / Wetland protection India by various Acts and Rules which includes:

- The Indian Fisheries Act 1897;
- The Indian Forest Act 1927;
- Wildlife (Protection) Act 1972;
- Water (Prevention and Control of Pollution) Act 1974;
- Water (Prevention and Control of Pollution) Cess Act 1977;
- Forest (Conservation) Act 1980;
- The Environment (Protection) Act 1986;
- Wildlife (Protection) Amendment Act 1991;

- National Conservation Strategy and Policy Statement on Environment and Development -1992;
- The Biological Diversity Act 2002;
- National Water Policy 2002;
- National Environment Policy 2006;
- Environment Impact Assessment Notification 2006;
- Wetlands (Conservation and Management) Rules 2010,
- Government of India; National Water Policy 2012;
- Wetlands (Conservation and Management) Rules 2017,
- Government of India; Karnataka Lake / Tank Conservation and Development Authority Act, 2014.

Application of this study

This assessment would provide vital information for development practitioners and policymakers so to understand the cumulative impacts of the rejuvenation lakes; gaps if any; document all innovations adopted that helps in the course correction while implementing such rejuvenation of lakes initiatives. It would also help to prepare an approach paper to influence the policy makers for taking up such comprehensive rejuvenation activities at a large scale using the existing government machinery.

Conclusions

Farming communities in the drier part of Northern Karnataka require a reliable water supply in the face of population growth, expansion of agriculture, biodiversity conservation and climate change. Rain water harvesting is being recognized not only as a viable decentralized water supply option for augmenting modern centralized water infrastructures that are costly and resource intensive but also as a green infrastructure strategy for climate change adaptation. As a result of adoption of water harvesting systems and rejuvenation of tanks hydrological behaviour of the sub-watersheds have improved. This resulted increase in base flow, reduction in sediment load to tanks, raised ground water level in the wells and bore wells, crop yield improvement due to soil moisture enrichment, vegetation cover improvement and increased availability of forage for livestock. Based on the successful results of this massive joint effort of Manuvikasa and other agencies and also with the participatory approach of the local people in the measures of harnessing, recharging and maintaining the quality of water and water bodies could be taken up as pivotal project in other areas of the district on a wider scale.

Recommendations

Strengthening or formation of tank development committee (*KereAbhivraddi Sangha*) needs to be initiated to maintain the percolation tanks as well as historic tanks. Micro-climatic conditions of the forest area have improved by increase in the soil moisture. Hence, these conditions could be utilized for the restoration of more number of trees in the forest area to improve vegetation cover. It is recommended that construction of more and more rain water harvesting structures in open lands as well as in *bettaland* as a barrier for heavy runoff water to control flood during heavy downpour. Bund planting with Khus-grass, *Citronella* grass, and other hybrid fodder grass to check bund erosion as well as to encourage livelihood options for the local people. Planting riparian species such as screw-pine along the banks on either side of the bunds to check erosion and also to facilitate bird population in the area. Planting wild pickle mango varieties (Appemidi) along the bund to earn extra cash income. Agro-forestry should be popularized in the area. Pisci-culture could be encouraged in the historic tanks. Tree Park or garden could be established along with boating in the tanks in association with Forest Department/tourism department in the historic tank villages to attract tourists to promote ecotourism. Aesthetic value of the historic tanks could be enhanced by promoting traditional feast or folk rituals like "*KereBete*" (Festive community programme for fish hunting) once in a year.

Tank rejuvenation is highly relevant for improving livelihoods and alleviating poverty in drought-prone regions. Tanks restore the ecological balance between surface and groundwater resources. Collective action is possible in resource management, provided there are incentives for cooperation. Market strategies such as beneficiary contribution are necessary for strengthening and sustaining the collective strategies. Considering the increased benefits and from point of equity, it is also important to improve the livelihood of the rural community through increasing the gross tank product in future tank rehabilitation and rejuvenation projects. Tank rejuvenation which has been started purely as a physical rehabilitation to increase agricultural productivity should in future focus on institutional strengthening and poverty alleviation.

ಕರೆಯ ಪುನರುಜ್ಜವನ ಕಾರ್ಯಕ್ರಮ Azm Premy Primitive of Institutives MANUVIKASA, Kariagi MANUVIE ಕೆರೆಯ ಹೆಸರು: ಬೇಕ್ಕೆ ಕೆರೆ. ಗ್ರಾಮ: ಹುಲ್ಲಂಟ. ಶಾ: ಕಂಘಟಗಿ. ಕೆಲ್ಲೆ: ಧಾರವಾಡೆ. Lake Name: Benne Kere. Village: Hullambi. Tg: Kalaghatagi. Di: Dharmad. 2020-21 Natord Support eleo gedres gerodocsor 7.08 deesor Azim Premji Philanthropic Initiative